Graph structure in polynomial systems: chordal networks

Pablo A. Parrilo

Laboratory for Information and Decision Systems
Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Based on joint work with Diego Cifuentes (MIT)

IMACCS - OSU - June 2017
Many application domains require the solution of large-scale systems of polynomial equations.

Among others: robotics, power systems, chemical engineering, cryptography, etc.
A polynomial system defined by \(m \) equations in \(n \) variables:

\[
f_i(x_0, \ldots, x_{n-1}) = 0, \quad i = 1, \ldots, m
\]
A polynomial system defined by \(m \) equations in \(n \) variables:

\[
f_i(x_0, \ldots, x_{n-1}) = 0, \quad i = 1, \ldots, m
\]

Construct a graph \(G \) (“primal graph”) with \(n \) nodes:

- Nodes are variables \(\{x_0, \ldots, x_{n-1}\} \).
- For each equation, add a clique connecting the variables appearing in that equation.
A polynomial system defined by \(m \) equations in \(n \) variables:

\[
f_i(x_0, \ldots, x_{n-1}) = 0, \quad i = 1, \ldots, m
\]

Construct a graph \(G \) ("primal graph") with \(n \) nodes:

- Nodes are variables \(\{x_0, \ldots, x_{n-1}\} \).
- For each equation, add a clique connecting the variables appearing in that equation

Example:

\[
I = \langle x_0^2 x_1 x_2 + 2x_1 + 1, \ x_1^2 + x_2, \ x_1 + x_2, \ x_2 x_3 \rangle
\]
Questions

“Abstracted” the polynomial system to a (hyper)graph.
Questions

“Abstracted” the polynomial system to a (hyper)graph.

- Can the graph structure help solve this system?
- For instance, to optimize, or to compute Groebner bases?
- Or, perhaps we can do something better?
- Preserve graph (sparsity) structure?
- Complexity aspects?
(Hyper)Graphical modelling

Pervasive idea in many areas, in particular: numerical linear algebra, graphical models, constraint satisfaction, database theory, . . .

Key notions: chordality and treewidth.

Many names: Arnborg, Beeri/Fagin/Maier/Yannakakis, Blair/Peyton, Bodlaender, Courcelle, Dechter, Freuder, Lauritzen/Spiegelhalter, Pearl, Robertson/Seymour, . . .
Pervasive idea in many areas, in particular: numerical linear algebra, graphical models, constraint satisfaction, database theory, . . .

Key notions: chordality and treewidth.

Many names: Arnborg, Beeri/Fagin/Maier/Yannakakis, Blair/Peyton, Bodlaender, Courcelle, Dechter, Freuder, Lauritzen/Spiegelhalter, Pearl, Robertson/Seymour, . . .

Remarkably (AFAIK) almost no work in computational algebraic geometry exploits this structure.
(Hyper)Graphical modelling

Pervasive idea in many areas, in particular: numerical linear algebra, graphical models, constraint satisfaction, database theory, . . .

Key notions: chordality and treewidth.

Many names: Arnborg, Beeri/Fagin/Maier/Yannakakis, Blair/Peyton, Bodlaender, Courcelle, Dechter, Freuder, Lauritzen/Spiegelhalter, Pearl, Robertson/Seymour, . . .

Remarkably (AFAIK) almost no work in computational algebraic geometry exploits this structure.

Reasonably well-known in discrete (0/1) optimization, what happens in the continuous side? (e.g., Waki et al., Lasserre, Bienstock, Vandenberghe, Lavaei, etc)
Chordality

Let G be a graph with vertices x_0, \ldots, x_{n-1}. A vertex ordering

$$x_0 > x_1 > \cdots > x_{n-1}$$

is a perfect elimination ordering if for all l, the set

$$X_l := \{x_l\} \cup \{x_m : x_m \text{ is adjacent to } x_l, \ x_l > x_m\}$$

is such that the restriction $G|_{X_l}$ is a clique.
Chordality

Let G be a graph with vertices x_0, \ldots, x_{n-1}. A vertex ordering

$$x_0 > x_1 > \cdots > x_{n-1}$$

is a perfect elimination ordering if for all l, the set

$$X_l := \{x_l\} \cup \{x_m : x_m \text{ is adjacent to } x_l, \ x_l > x_m\}$$

is such that the restriction $G|_{X_l}$ is a clique.

A graph is chordal if it has a perfect elimination ordering.
Chordality

Let G be a graph with vertices x_0, \ldots, x_{n-1}. A vertex ordering

$$x_0 > x_1 > \cdots > x_{n-1}$$

is a **perfect elimination ordering** if for all l, the set

$$X_l := \{x_l\} \cup \{x_m : x_m \text{ is adjacent to } x_l, \ x_l > x_m\}$$

is such that the restriction $G|_{X_l}$ is a clique.

A graph is **chordal** if it has a perfect elimination ordering.

(Equivalently, in numerical linear algebra: Cholesky factorization has no “fill-in”.)
A chordal completion of G is a chordal graph with the same vertex set as G, and which contains all edges of G.
Chordality, treewidth, and a meta-theorem

A chordal completion of G is a chordal graph with the same vertex set as G, and which contains all edges of G.

The treewidth of a graph is the clique number (minus one) of its smallest chordal completion.

Informally, treewidth quantitatively measures how “tree-like” a graph is.
Chordality, treewidth, and a meta-theorem

A **chordal completion** of G is a chordal graph with the same vertex set as G, and which contains all edges of G.

The **treewidth** of a graph is the clique number (minus one) of its smallest chordal completion.

Informally, treewidth quantitatively measures how “tree-like” a graph is.

Meta-theorem:
NP-complete problems are “easy” on graphs of small treewidth.
Recall the *subset sum* problem, with data $A = \{a_1, \ldots, a_n\} \subset \mathbb{Z}$. Is there a subset of A that adds up to 0?

Letting s_i be the partial sums, we can write a polynomial system:

$$
\begin{align*}
0 &= s_0 \\
0 &= (s_i - s_{i-1})(s_i - s_{i-1} - a_i) \\
0 &= s_n
\end{align*}
$$

The graph associated with these equations is a path (treewidth=1)

$$
\begin{array}{c}
S_0 \quad \rightarrow \quad S_1 \quad \rightarrow \quad S_2 \quad \rightarrow \ldots \quad \rightarrow \quad S_n
\end{array}
$$

But, subset sum is NP-complete... :(
Bad news? (II)

For linear equations, “good” elimination preserves graph structure (perfect!)

Ex: Consider $I = \langle x_0 x_2 - 1, x_1 x_2 - 1 \rangle$, whose associated graph is the path $x_0 \rightarrow x_2 \rightarrow x_1$.

Every Groebner basis must contain the polynomial $x_0 - x_1$, breaking the sparsity structure.

Q: Are there alternative descriptions that “play nicely” with graphical structure?
For linear equations, “good” elimination preserves graph structure (perfect!)

For polynomials, however, Groebner bases can destroy chordality.

Ex: Consider

\[I = \langle x_0 x_2 - 1, x_1 x_2 - 1 \rangle, \]

whose associated graph is the path \(x_0 \xrightarrow{} x_2 \xrightarrow{} x_1 \).
Bad news? (II)

For linear equations, “good” elimination preserves graph structure (perfect!)

For polynomials, however, Groebner bases can destroy chordality.

Ex: Consider

\[I = \langle x_0 x_2 - 1, x_1 x_2 - 1 \rangle, \]

whose associated graph is the path \(x_0 \rightarrow x_2 \rightarrow x_1 \).

Every Groebner basis must contain the polynomial \(x_0 - x_1 \), breaking the sparsity structure.
For linear equations, “good” elimination preserves graph structure (perfect!)

For polynomials, however, Groebner bases can destroy chordality.

Ex: Consider

\[I = \langle x_0 x_2 - 1, x_1 x_2 - 1 \rangle, \]

whose associated graph is the path \(x_0 \rightarrow x_2 \rightarrow x_1 \).

Every Groebner basis must contain the polynomial \(x_0 - x_1 \), breaking the sparsity structure.

Q: Are there alternative descriptions that “play nicely” with graphical structure?
How to resolve this (apparent) contradiction?

“Trees are good” \(\iff\) “Trees can be NP-hard”
How to resolve this (apparent) contradiction?

“Trees are good” ⇐⇒ “Trees can be NP-hard”

Underlying hero/culprit: dynamic programming (DP), and more refined cousins (nonserial DP, belief propagation, etc).

Cifuentes, Parrilo (MIT) Graph structure in polynomial systems IMACCS 2017 10 / 25
How to resolve this (apparent) contradiction?

“Trees are good” ⇐⇒ “Trees can be NP-hard”

Underlying hero/culprit: dynamic programming (DP), and more refined cousins (nonserial DP, belief propagation, etc).

Key: “nice” graphical structure allows DP to work *in principle*. But, we also need to control the *complexity* of the objects DP is propagating. Without this, we’re doomed!

[Ubiquitous theme: “complicated” value functions in optimal control, “message complexity” in statistical inference, ...]
How to get around this?

Need to impose conditions on the geometry!
How to get around this?

Need to impose conditions on the geometry!

In the algebraic setting, a natural condition: degree of *projections onto clique subspaces.*
How to get around this?

Need to impose conditions on the geometry!

In the algebraic setting, a natural condition: degree of *projections onto clique subspaces*.

Consider the full solution set (an algebraic variety).

Require the *projections* onto the subspaces spanned by the *maximal cliques* to have bounded degree.
How to get around this?

Need to impose conditions on the geometry!

In the algebraic setting, a natural condition: degree of *projections onto clique subspaces*.

Consider the full solution set (an algebraic variety).

Require the *projections* onto the subspaces spanned by the maximal cliques to have bounded degree.

- For discrete domains (e.g., 0/1 problems), always satisfied.
- Holds in other cases, e.g., low-rank matrices (determinantal varieties).
Two approaches

- **Chordal elimination and Groebner bases (arXiv:1411:1745)**
 - New *chordal elimination* algorithm, to exploit graphical structure
 - Conditions under which chordal elimination succeeds
 - For a certain class, complexity is *linear* in number of variables! (exponential in treewidth)
 - Implementation and experimental results

- **Chordal networks (arXiv:1604.02618)**
 - New representation/decomposition for polynomial systems
 - Efficient algorithms to compute them. Can use them for root counting, dimension, radical ideal membership, etc.
 - Links to BDDs (binary decision diagrams) and extensions
Example 1: Coloring a cycle

Let $C_n = (V, E)$ be the cycle graph and consider the ideal I given by the equations

$$x_i^3 - 1 = 0, \quad i \in V$$
$$x_i^2 + x_ix_j + x_j^2 = 0, \quad ij \in E$$

These equations encode the proper 3-colorings of the graph. Note that coloring the cycle graph is very easy!
Example 1: Coloring a cycle

Let $C_n = (V, E)$ be the cycle graph and consider the ideal I given by the equations

$$x_i^3 - 1 = 0, \quad i \in V$$
$$x_i^2 + x_i x_j + x_j^2 = 0, \quad ij \in E$$

These equations encode the proper 3-colorings of the graph. Note that coloring the cycle graph is very easy!

However, a Gröbner basis is not so simple: one of its 13 elements is

$$x_0 x_2 x_4 x_6 + x_0 x_2 x_4 x_7 + x_0 x_2 x_4 x_8 + x_0 x_2 x_5 x_6 + x_0 x_2 x_5 x_7 + x_0 x_2 x_5 x_8 + x_0 x_2 x_6 x_8 + x_0 x_2 x_7 x_8 + x_0 x_2 x_8 + x_0 x_3 x_4 x_6 + x_0 x_3 x_4 x_7 + x_0 x_3 x_5 x_6 + x_0 x_3 x_5 x_7 + x_0 x_3 x_5 x_8 + x_0 x_3 x_6 x_8 + x_0 x_3 x_7 x_8 + x_0 x_3 x_8 + x_0 x_4 x_6 x_8 + x_0 x_4 x_7 x_8 + x_0 x_4 x_8 + x_0 x_5 x_6 x_8 + x_0 x_5 x_7 x_8 + x_0 x_5 x_8 + x_0 x_6 x_8 + x_0 x_7 x_8 + x_0 + x_1 x_2 x_4 x_6 + x_1 x_2 x_4 x_7 + x_1 x_2 x_4 x_8 + x_1 x_2 x_5 x_6 + x_1 x_2 x_5 x_7 + x_1 x_2 x_5 x_8 + x_1 x_2 x_6 x_8 + x_1 x_2 x_7 x_8 + x_1 x_2 x_8 + x_1 x_3 x_4 x_6 + x_1 x_3 x_4 x_7 + x_1 x_3 x_4 x_8 + x_1 x_3 x_5 x_6 + x_1 x_3 x_5 x_7 + x_1 x_3 x_5 x_8 + x_1 x_3 x_6 x_8 + x_1 x_3 x_7 x_8 + x_1 x_3 x_8 + x_1 x_4 x_6 + x_1 x_4 x_7 x_8 + x_1 x_4 x_8 + x_1 x_5 x_6 x_8 + x_1 x_5 x_7 x_8 + x_1 x_5 x_8 + x_1 x_6 x_8 + x_1 x_7 x_8 + x_1 x_8 + x_2 x_4 x_6 + x_2 x_4 x_7 + x_2 x_4 x_8 + x_2 x_5 x_6 + x_2 x_5 x_7 + x_2 x_5 x_8 + x_2 x_6 x_8 + x_2 x_7 x_8 + x_2 + x_3 x_4 x_6 + x_3 x_4 x_7 x_8 + x_3 x_4 x_8 + x_3 x_5 x_6 x_8 + x_3 x_5 x_7 x_8 + x_3 x_5 x_8 + x_3 x_6 x_8 + x_3 x_7 x_8 + x_3 x_8 + x_4 x_6 x_8 + x_4 x_7 x_8 + x_4 x_8 + x_5 x_6 x_8 + x_5 x_7 x_8 + x_5 x_8 + x_6 + x_7 + x_8$$
Example 1: Coloring a cycle

There is a nicer representation, that respects its graphical structure. The solution set can be decomposed into triangular sets:

\[\mathcal{V}(I) = \bigcup_{T} \mathcal{V}(T) \]

where the union is over all maximal directed paths in the figure. The number of triangular sets is 21, which is the 8-th Fibonacci number.

\[
\begin{align*}
0 &: x_0^2 + x_0x_8 + x_8^2, x_0 + x_1 + x_8 \\
1 &: x_1 - x_8, x_1 + x_2 + x_8, x_1^2 + x_1x_8 + x_8^2 \\
2 &: x_2^2 + x_2x_8 + x_8^2, x_2 + x_3 + x_8, x_2 - x_8 \\
3 &: x_3 - x_8, x_3 + x_4 + x_8, x_3^2 + x_3x_8 + x_8^2 \\
4 &: x_4^2 + x_4x_8 + x_8^2, x_4 + x_5 + x_8, x_4 - x_8 \\
5 &: x_5 - x_8, x_5 + x_6 + x_8, x_5^2 + x_5x_8 + x_8^2 \\
6 &: x_6 + x_7 + x_8, x_6 - x_8 \\
7 &: x_7^2 + x_7x_8 + x_8^2 \\
8 &: x_8^3 - 1
\end{align*}
\]
A new representation of structured polynomial systems!

- What do they look like?
 - “Enlarged” elimination tree, with polynomial sets as nodes.
 - Efficient encoding of components in paths/subtrees.
Chordal networks

A new representation of structured polynomial systems!

- What do they look like?
 - “Enlarged” elimination tree, with polynomial sets as nodes.
 - Efficient encoding of components in paths/subtrees.

- How can you compute them?
 - A nice algorithm to compute chordal networks.
 - Remarkably, many polynomial systems admit “small” chordal networks, even though the number of components may be exponentially large.
Chordal networks

A new representation of structured polynomial systems!

- What do they look like?
 - “Enlarged” elimination tree, with polynomial sets as nodes.
 - Efficient encoding of components in paths/subtrees.

- How can you compute them?
 - A nice algorithm to compute chordal networks.
 - Remarkably, many polynomial systems admit “small” chordal networks, even though the number of components may be exponentially large.

- What are they good for?
 - Can be effectively used to solve feasibility, counting, dimension, elimination, radical membership, ...
 - Linear time algorithms (exponential in treewidth)
 - Implementation and experimental results.
The elimination tree of a graph G is the following directed spanning tree:

For each ℓ there is an arc from x_ℓ towards the largest x_p that is adjacent to x_ℓ and $p > \ell$.

Note that the elimination tree is rooted at x_{n-1}.
A **G-chordal network** is a directed graph \mathcal{N}, whose nodes are polynomial sets in $\mathbb{K}[X]$, such that:

- **Graded**: Each node F is given a $\text{rank}(F) \in \{0, \ldots, n-1\}$, s.t. $F \subset \mathbb{K}[X_{\text{rank}(F)}]$.

- **Tree-like**: For any arc (F_ℓ, F_p) we have that x_p is the parent of x_ℓ in the elimination tree of G, where $\ell = \text{rank}(F_\ell), p = \text{rank}(F_p)$.

A chordal network is **triangular** if each node consists of a single polynomial f, and either $f = 0$ or its largest variable is $x_{\text{rank}(f)}$.
Chordal networks (Example)

\[g(a, b, c) := a^2 + b^2 + c^2 + ab + bc + ca \]
Computing chordal networks (Example)

\[I = \langle x_2 - x_3, x_1 - x_2, x_1^2 - x_1, x_0 x_2 - x_2, x_0^3 - x_0 \rangle \]

The output of the algorithm will be

\[x_0^3 - x_0, \quad x_0 - 1 \]
\[x_1 - x_2 \]
\[x_2, \quad x_2 - 1 \]
\[x_3, \quad x_3 - 1 \]

This represents the decomposition of \(I \) into the triangular sets

\[(x_3, x_2, x_1 - x_2, x_0^3 - x_0), \]
\[(x_3, x_2 - 1, x_1 - x_2, x_0 - 1), \]
\[(x_3 - 1, x_2 - 1, x_1 - x_2, x_0 - 1). \]
Computing chordal networks (Example)

\[x_0^3 - x_0, x_0 x_2 - x_2, x_2^2 - x_2 \]

\[x_1 - x_2, x_2^2 - x_2 \]

\[x_2^2 - x_2, x_2 x_3^2 - x_3 \]

0
Computing chordal networks (Example)

\[
\begin{align*}
x_0^3 - x_0, & \quad x_0x_2 - x_2, x_2^2 - x_2 \\
x_1 - x_2, & \quad x_2^2 - x_2 \\
x_2^2 - x_2, & \quad x_2x_3^2 - x_3 \\
\end{align*}
\]

\[\text{tria}\]

\[
\begin{align*}
x_0^3 - x_0, & \quad x_0 - 1, x_2 - 1 \\
x_1 - x_2, & \quad x_2^2 - x_2 \\
x_2^2 - x_2, & \quad x_2x_3^2 - x_3 \\
\end{align*}
\]

\[\text{tria}\]

\[
\begin{align*}
x_0^3 - x_0, & \quad x_0 - 1, x_2 - 1 \\
x_1 - x_2, & \quad x_2^2 - x_2 \\
x_2^2 - x_2, & \quad x_2x_3^2 - x_3 \\
\end{align*}
\]
Computing chordal networks (Example)

\[
x_0^3 - x_0, x_0x_2 - x_2, x_2^2 - x_2,
\]

\[
x_1 - x_2, x_2^2 - x_2,
\]

\[
x_2 - x_2, x_2x_3 - x_3,
\]

\[
\rightarrow \quad tria
\]

\[
x_0^3 - x_0, x_0, x_0 - 1, x_2 - 1,
\]

\[
x_1 - x_2, x_2^2 - x_2,
\]

\[
x_2^2 - x_2, x_2x_3^2 - x_3,
\]

\[
\rightarrow \quad elim
\]

\[
x_0^3 - x_0,
\]

\[
x_0 - 1,
\]

\[
x_1 - x_2, x_2^2 - x_2,
\]

\[
x_2^2 - x_2, x_2x_3^2 - x_3, x_2 - 1,
\]

\[
\rightarrow \quad merge
\]
Computing chordal networks (Example)

\[
\begin{align*}
&x_0^3 - x_0, x_0x_2 - x_2, x_2^2 - x_2, \\
&x_1 - x_2, x_2^2 - x_2, \\
&x_2^2 - x_2, x_2x_3^2 - x_3, \\
&0
\end{align*}
\]

\[
\begin{align*}
&x_0^3 - x_0, x_0 - 1, x_2 - 1, \\
&x_1 - x_2, x_2^2 - x_2, \\
&x_2^2 - x_2, x_2x_3^2 - x_3, \\
&0
\end{align*}
\]

\[
\begin{align*}
&x_0^3 - x_0, \\
&x_0 - 1, \\
&x_1 - x_2, \\
&x_2^2 - x_2, x_2x_3^2 - x_3, x_2 - 1
\end{align*}
\]
Computing chordal networks (Example)

\[x_0^3 - x_0, x_0x_2 - x_2, x_2^2 - x_2, x_1 - x_2, x_2^2 - x_2, x_2 - x_2, x_2x_3^2 - x_3 \]

\[\xrightarrow{\text{tria}} \]

\[x_0^3 - x_0, x_0 - 1, x_2 - 1, x_1 - x_2, x_2^2 - x_2, x_2^2 - x_2, x_2 - 1, x_2x_3^2 - x_3, x_2 - x_2, x_2 - x_2, x_2 - x_2, x_2x_3^2 - x_3, x_2 - 1 \]

\[\xrightarrow{\text{elim}} \]

\[x_0^3 - x_0, x_0 - 1, x_1 - x_2, x_2^2 - x_2, x_2x_3^2 - x_3, x_2 - 1, x_2 - x_2, x_2x_3^2 - x_3, x_2 - 1 \]

\[\xrightarrow{\text{tria}} \]

\[x_0^3 - x_0, x_0 - 1, x_1 - x_2, x_2 - x_2, x_2 - x_2, x_2 - 1, x_3 - 1 \]
Computing chordal networks (Example)

\[
\begin{align*}
&x_0^3 - x_0, x_0 x_2 - x_2, x_2^2 - x_2 \\
&x_1 - x_2, x_2^2 - x_2 \\
&x_2 - x_2, x_2 x_3^2 - x_3
\end{align*}
\]

\[\xrightarrow{\text{tria}}\]

\[
\begin{align*}
&x_0^3 - x_0, x_0 - 1, x_2 - 1 \\
&x_1 - x_2, x_2^2 - x_2 \\
&x_2 - x_2, x_2 x_3^2 - x_3
\end{align*}
\]

\[\xrightarrow{\text{elim}}\]

\[
\begin{align*}
&x_0^3 - x_0, x_0 - 1 \\
&x_1 - x_2, x_2^2 - x_2 \\
&x_2 - x_2, x_2 x_3^2 - x_3, x_2 - 1
\end{align*}
\]

\[\xrightarrow{\text{tria}}\]

\[
\begin{align*}
&x_0^3 - x_0 \\
&x_1 - x_2 \\
&x_2 - x_2, x_2 x_3^2 - x_3, x_2 - 1
\end{align*}
\]

\[\xrightarrow{\text{elim}}\]

\[
\begin{align*}
&x_0^3 - x_0 \\
&x_1 - x_2 \\
&x_2 - x_2, x_2 x_3^2 - x_3, x_2 - 1
\end{align*}
\]
Computing chordal networks (Example)

\[x_0^3 - x_0, x_0 x_2 - x_2, x_2^2 - x_2 \]
\[x_1 - x_2, x_2^2 - x_2 \]
\[x_2 - x_2, x_2 x_3^2 - x_3 \]

\[\text{tria} \rightarrow \]

\[x_0^3 - x_0, x_0 - 1, x_2 - 1 \]
\[x_1 - x_2, x_2^2 - x_2 \]
\[x_2 - x_2, x_2 x_3^2 - x_3, x_2 - 1 \]

\[\text{elim} \rightarrow \]

\[x_0^3 - x_0 \]
\[x_0 - 1 \]
\[x_1 - x_2 \]
\[x_2 - x_2, x_2 x_3^2 - x_3, x_2 - 1 \]

\[\text{merge} \rightarrow \]

\[x_0^3 - x_0 \]
\[x_0 - 1 \]
\[x_1 - x_2 \]
\[x_2 - 1, x_3 - 1 \]

\[x_0 - 1 \]
\[x_1 - x_2 \]
\[x_2 - 1, x_3 - 1 \]

\[x_0 - 1 \]
\[x_1 - x_2 \]
\[x_2 - 1, x_3 - 1 \]

\[x_0 - 1 \]
\[x_1 - x_2 \]
\[x_2 - 1, x_3 - 1 \]
Chordal networks in computational algebra

Given a triangular chordal network \mathcal{N} of a polynomial system, the following problems can be solved in linear time:

- Compute the cardinality of $\mathcal{V}(I)$.
- Compute the dimension of $\mathcal{V}(I)$
- Describe the top dimensional component of $\mathcal{V}(I)$.

We also developed efficient algorithms to

- Solve the radical ideal membership problem ($h \in \sqrt{I}$?)
- Compute the equidimensional components of the variety.
Links to BDDs

Very interesting connections with *binary decision diagrams* (BDDs).

- A clever representation of Boolean functions/sets, usually much more compact than naive alternatives
- Enabler of very significant practical advances in (discrete) formal verification and model checking
- “One of the only really fundamental data structures that came out in the last twenty-five years” (D. Knuth)

For the special case of *monomial ideals*, chordal networks are equivalent to (reduced, ordered) BDDs. But in general, more powerful!
Implemented in Sage, using Singular and PolyBoRi (for \mathbb{F}_2). Upcoming package for Macaulay2.

- Graph colorings (counting q-colorings)
- Cryptography ("baby" AES, Cid et al.)
- Sensor Network localization
- Discretization of polynomial equations
- Reachability in vector addition systems
- Algebraic statistics
Example: Vector addition systems

Given a set of vectors $B \subset \mathbb{Z}^n$, construct a graph with vertex set \mathbb{N}^n in which $u, v \in \mathbb{N}^n$ are adjacent if $u - v \in \pm B$.

Ex: Determine whether $f_n \in I_n$, where

\[
\begin{align*}
 f_n &:= x_0 x_1^2 x_2^3 \cdots x_{n-1}^n - x_0^n x_1^{n-1} \cdots x_{n-1}, \\
 I_n &:= \{x_i x_{i+3} - x_{i+1} x_{i+2} : 0 \leq i < n\},
\end{align*}
\]

and where the indices are taken modulo n.

We compare our radical membership test with Singular (Gröbner bases) and Epsilon (triangular decompositions).

<table>
<thead>
<tr>
<th>n</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChordalNet</td>
<td>0.7</td>
<td>3.0</td>
<td>8.5</td>
<td>14.3</td>
<td>21.8</td>
<td>29.8</td>
<td>37.7</td>
<td>48.2</td>
<td>62.3</td>
<td>70.6</td>
<td>84.8</td>
</tr>
<tr>
<td>Singular</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>17.9</td>
<td>1036.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Epsilon</td>
<td>0.1</td>
<td>0.2</td>
<td>0.4</td>
<td>2.0</td>
<td>54.4</td>
<td>160.1</td>
<td>5141.9</td>
<td>17510.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
(Hyper)graphical structure *may* simplify optimization/solving

Under assumptions (treewidth + algebraic structure), tractable!

New data structures: **chordal networks**

Yields practical, competitive, implementable algorithms

Ongoing and future work: other polynomial solving approaches (e.g., homotopies, full numerical algebraic geometry...)
Summary

- (Hyper)graphical structure may simplify optimization/solving
- Under assumptions (treewidth + algebraic structure), tractable!
- New data structures: chordal networks
- Yields practical, competitive, implementable algorithms
- Ongoing and future work: other polynomial solving approaches (e.g., homotopies, full numerical algebraic geometry...)

If you want to know more:

Thanks for your attention!