Cooperation and Competition on Exchange of Network Connectivity Services

Leandros Tassiulas
Yale University

IMaCCS, 2017

Joint work with George Iosifidis, Leonidas Georgiadis
User Provided Networks (UPNs)

- Exploit user idle resources or opportunistic advantages to improve network services to the entire user community.
Handheld A relays Internet traffic of B via an $A - B$ D2D link when:

- A has a good channel and B doesn’t.
- A has excess quota in her plan and B doesn’t.
- A has redundant battery reserves while B doesn’t and prefers to use the low power D2D link.

A will do so anticipating B to reciprocate in the future, or

A will do so anticipating similar service from C who owes to B in reciprocity.
Collaborative Network Services

- A mechanism based on the Nash bargaining solution + virtual currency.

- Users are modeled through payoff functions.
 - Utility from consuming data, *energy cost* and *monetary cost* for serving data, virtual currency benefits.

- Efficiency and Fairness are addressed by the Nash Bargaining Solution.
 - Pareto optimal.
 - Takes into account the standalone operation of each node.
 - Self-enforcing, hence users agree to apply the policy.

- Virtual Currency solves the *double coincidence of needs and wants* problem.

- Decentralized implementation is possible if necessary.
 - Dual decomposition of a convex optimization problem (the NBS problem).

CoNeS: Collaborative Network Sharing System

- Prototype implementation on Linux handhelds (and later on Android phones).
 - SDN-enhanced mobile devices: implement a programmable packet forwarding datapath.
 - Cloud service: monitors the nodes, and devises the policy.
 - Agnostic to radio interface.
 - Highly adaptive to changing network conditions and user needs.

Directed, time-evolving graph: \(\mathbf{C}(t) = (C_{ij}(t) \in \{0, 1\} : i, j \in \mathcal{N}) \).

Infrastructure access configuration: \(\mathbf{C}_0(t) = (C_{i0}(t) \in \{0, 1\} : i \in \mathcal{N}) \).
Directed, time-evolving graph: $\mathbf{C}(t) = (C_{ij}(t) \in \{0, 1\} : i, j \in \mathcal{N})$.

Infrastructure access configuration: $\mathbf{C}_0(t) = (C_{i0}(t) \in \{0, 1\} : i \in \mathcal{N})$.
Exchange of Connectivity Services

A connected node relays one other node among those one-hop away.

- Instantaneous relay configuration \(R(t) = (R_{ij}(t) \in \{0, 1\} : i, j \in \mathcal{N}) \).

Goal of the service: connect unconnected nodes.

Benefit of each node: amount of relay he receives.
Connectivity among the nodes is fixed and bidirectional.

Connectivity of a mobile with infrastructure, thus opportunity for relaying, varies randomly.

Each node i generates connectivity tokens with rate D_i that she distributes to her neighbors.

Each node i accumulates connectivity tokens, $d_{ji}(t)$ is the number of tokens received from node j by node i till time t.

Cumulative number of tokens received by i is $r_i(t) = \sum_j d_{ji}(t)$.

The objective of each node is to maximize $r_i(t)$.
Long Term Average Regime

\[\lim_{t \to \infty} \frac{d_{ij}(t)}{t} = d_{ij} \]

\[D_i = \sum_j d_{ij} \]

\[r_i = \sum_j d_{ji} \]
Long Term Average Regime

- An undirected connected graph \(G = (\mathcal{N}, \mathcal{E}) \).

\[
D_i \quad d_{ij} \quad \mathcal{N}_i \quad d_{ji} \quad r_i
\]

- Set of exchange configurations:

\[
\mathbb{D} = \{ \mathbf{d} = (d_{ij})_{(i,j) \in \mathcal{E}} : d_{ij} \geq 0, \sum_{j \in \mathcal{N}_i} d_{ij} = D_i \}\]

- Set of feasible received resource vectors:

\[
\mathbb{R} = \{ \mathbf{r} = (r_i)_{i \in \mathcal{N}} : r_i = \sum_{j \in \mathcal{N}_i} d_{ji}, i \in \mathcal{N}, \mathbf{d} \in \mathbb{D} \},
\]

- Exchange ratio vector:

\[
\rho_i = \frac{r_i}{D_i}, \quad \mathbf{\rho} = (\rho_i, i \in \mathcal{N})
\]

What are sensible exchange configurations and received resource vectors?
Which is a *fair* exchange configuration?

- Ideal exchange: \(r_i = D_i, \ \forall \ i \in \mathcal{N}, \) i.e., \(\rho_i = 1 \)
- Else: balance the exchange ratios as much as possible.

Lexicographically optimal (Max-min fair) vector of exchange ratios \(\rho. \)

- If \(x \preceq_{\text{lex}} y, \ \forall \ y, \) then \(x^* \) is lex-optimal, where \(x, y \in \mathbb{R}^N. \)

Is there a lex-optimal vector of exchange ratios \(\rho^* \succeq \rho? \)

- Where we defined \(\rho_i = r_i/D_i. \)

Which are the exchange configurations \(d^* \) that yield \(\rho^*? \)
Coalitional Framework

- Assume that subsets of nodes can jointly decide to exclude others.

- NTU Coalitional Service Exchange game:
 - Played over the graph $G = (\mathcal{N}, \mathcal{E})$, by \mathcal{N} players.
 - Each node i has strategy $d_i = (d_{ij} : j \in \mathcal{N}_i, \sum_j d_{ij} = D_i)$, and utility $\sum_j d_{ji}$.

- (Strong) Stability Definition:
 - An allocation d (and the resource vector r) is called strongly stable if $\forall S \subseteq \mathcal{N}$, there is no allocation \mathbf{d}_S on the induced subgraph $G_S = (S, \mathcal{E}_S)$, such that $\hat{r}_i \geq r_i \ \forall i \in S$, and $\hat{r}_j > r_j$ for at least one node $j \in S$.

- Are there strongly stable exchanges? Can we compute them?
Market Framework (Arrow-Debrau)

- λ_i: selling price of node i in $/\text{unit resource}$.
- d_{ij}: amount of node i resource purchased by node j.
- Exchange d_{ij}, $i = 1, 2, \ldots, N$, $(i, j) \in E$.
- An exchange is **feasible** if each node i can afford his acquisitions by his sales:
 \[
 \lambda_i \sum_j d_{ij} \geq \sum_j \lambda_j d_{ji}
 \]
- An exchange is **stable** if each node i buys only from his cheapest neighbors:
 \[
 d_{ji} > 0 \Rightarrow \lambda_j = \min_{l:(l,i) \in E} \{ \lambda_l \}
 \]
- An exchange is **efficient** if each node i sells all his endowment:
 \[
 \sum_j d_{ji} = D_i
 \]
- Are there set of prices $(\lambda_1, \lambda_2, \ldots, \lambda_N)$ such that there is an exchange that is simultaneously **feasible**, **stable** and **efficient**?
Results

- There is a unique lex-optimal exchange ratio vector ρ^*.

- There is a set of prices $(\lambda_1^*, \ldots, \lambda_N^*)$, unique up to scaling, for which there are exchanges feasible, stable and efficient.

- The two are related as $\lambda_i^* = \sqrt{\rho_i^*}$.

- All exchanges that are feasible, stable and efficient, are strongly stable with respect to coalitions.

- The opposite does not hold: there are exchanges stable with respect to coalitions that deviate from the lex optimal exchange ratio vector.
Characterization of the lex-optimal vector

- For a graph $G = (\mathcal{N}, \mathcal{E})$, endowments $\{D_i\}$, and $\forall \mathbf{r} \in \mathbb{R}$ define:
 - The different values (levels) of the exchange ratios: $l_1 < l_2 < \ldots < l_K$
 - The level index $k(i)$ of each node i: $l_{k(i)} = \rho_i$
 - The level set $\mathcal{L}_m = \{i \in \mathcal{N} : k(i) = m\}$, $m = 1, \ldots, K$.
 - Node subsets:
 - $\mathcal{Q}_1 = \mathcal{N}$, and $\mathcal{Q}_k = \mathcal{N} - \bigcup_{m=1}^{k-1} (\mathcal{L}_m \cup \mathcal{L}_{K-m+1})$, $2 \leq k \leq \lceil K/2 \rceil$.
 - Subgraph $G_{\mathcal{Q}_k} = (\mathcal{Q}_k, \mathcal{E}_{\mathcal{Q}_k})$
 - $\mathcal{N}(S)$: neighbors of nodes in set S, which do not belong themselves in S.

![Graph example](image-url)
Characterization of the lex-optimal vector

For a graph $G = (\mathcal{N}, \mathcal{E})$, endowments $\{D_i\}$, and $\forall r \in \mathbb{R}$ define:

- The different values (levels) of the exchange ratios: $l_1 < l_2 < \ldots < l_K$
- The level index $k(i)$ of each node i: $l_{k(i)} = r_i$.
- The level set $L_m = \{i \in \mathcal{N} : k(i) = m\}$, $m = 1, \ldots, K$.
- Node subsets:
 - $Q_1 = \mathcal{N}$, and $Q_k = \mathcal{N} - \bigcup_{m=1}^{k-1} (L_m \cup L_{K-m+1})$, $2 \leq k \leq \lfloor K/2 \rfloor$.
 - Subgraph $G_{Q_k} = (Q_k, \mathcal{E}_{Q_k})$
- $\mathcal{N}(S)$: neighbors of nodes in set S, which do not belong themselves in S.

![Graph Diagram](image-url)
Characterization of the lex-optimal vector

- For a graph $G = (\mathcal{N}, \mathcal{E})$, endowments $\{D_i\}$, and $\forall r \in \mathbb{R}$ define:
 - The different values (levels) of the exchange ratios: $l_1 < l_2 < \ldots < l_K$
 - The level index $k(i)$ of each node i: $l_{k(i)} = \rho_i$
 - The level set $\mathcal{L}_m = \{i \in \mathcal{N} : k(i) = m\}$, $m = 1, \ldots, K$.
 - Node subsets:
 - $Q_1 = \mathcal{N}$, and $Q_k = \mathcal{N} - \bigcup_{m=1}^{k-1} (\mathcal{L}_m \cup \mathcal{L}_{K-m+1})$, $2 \leq k \leq \lceil K/2 \rceil$.
 - Subgraph $G_{Q_k} = (Q_k, \mathcal{E}_{Q_k})$
 - $\mathcal{N}(S)$: neighbors of nodes in set S, which do not belong themselves in S.

![Diagram](image_url)
Characterization of the lex-optimal vector

For a graph \(G = (\mathcal{N}, \mathcal{E}) \), endowments \(\{D_i\} \), and \(\forall \, r \in \mathbb{R} \) define:

- The different values (levels) of the exchange ratios: \(l_1 < l_2 < \ldots < l_K \)
- The level index \(k(i) \) of each node \(i \): \(k(i) = p_i \).
- The level set \(\mathcal{L}_m = \{ i \in \mathcal{N} : k(i) = m \} \), \(m = 1, \ldots, K \).
- Node subsets:
 - \(\mathcal{Q}_1 = \mathcal{N} \), and \(\mathcal{Q}_k = \mathcal{N} - \bigcup_{m=1}^{k-1} (\mathcal{L}_m \cup \mathcal{L}_{K-m+1}) \), \(2 \leq k \leq \lceil K/2 \rceil \).
 - Subgraph \(G_{\mathcal{Q}_k} = (\mathcal{Q}_k, \mathcal{E}_{\mathcal{Q}_k}) \)
- \(\mathcal{N}(S) \): neighbors of nodes in set \(S \), which do not belong themselves in \(S \).
Characterization of the lex-optimal vector

For a graph \(G = (\mathcal{N}, \mathcal{E}) \), endowments \(\{D_i\} \), and \(\forall \ r \in \mathbb{R} \) define:

- The different values (levels) of the exchange ratios: \(l_1 < l_2 < \ldots < l_K \)
- The level index \(k(i) \) of each node \(i \): \(l_{k(i)} = \rho_i \).
- The level set \(\mathcal{L}_m = \{ i \in \mathcal{N} : k(i) = m \} \), \(m = 1, \ldots, K \).
- Node subsets:
 - \(\mathcal{Q}_1 = \mathcal{N} \), and \(\mathcal{Q}_k = \mathcal{N} - \bigcup_{m=1}^{k-1} (\mathcal{L}_m \cup \mathcal{L}_{K-m+1}) \), \(2 \leq k \leq \lceil K/2 \rceil \).
 - Subgraph \(G_{\mathcal{Q}_k} = (\mathcal{Q}_k, \mathcal{E}_{\mathcal{Q}_k}) \)

- \(\mathcal{N}(S) \): neighbors of nodes in set \(S \), which do not belong themselves in \(S \).
Properties of ρ^*

Theorem: If an allocation d^* is lex-optimal, then the following properties hold:

1. \mathcal{L}^*_k is an independent set in graph G_{Q_k}, for $k = 1, \ldots, \left\lfloor \frac{K}{2} \right\rfloor$.
 - E.g., nodes in \mathcal{L}^*_1 are independent in $G_{Q_1} = G$, \mathcal{L}^*_2 are independent in G_{Q_2}, etc.

2. $\mathcal{L}^*_{K-k+1} = \mathcal{N}_{Q_k}(\mathcal{L}^*_k)$, for $k = 1, \ldots, \left\lfloor \frac{K}{2} \right\rfloor$.
 - E.g., (assume $K = 7$) $\mathcal{L}^*_7 = \mathcal{N}_{Q_1}(\mathcal{L}^*_1)$, $\mathcal{L}^*_6 = \mathcal{N}_{Q_2}(\mathcal{L}^*_2)$, etc.

3. $l^*_k \cdot l^*_{K-k+1} = 1$, for $k = 1, \ldots, \left\lfloor K/2 \right\rfloor$.
 - E.g., $l_1 \cdot l_7 = 1$, $l_2 \cdot l_6 = 1$, etc.

4. $\sum_{i \in \mathcal{L}^*_k} r^*_i = \sum_{i \in \mathcal{L}^*_{K-k+1}} D_i$, for $k = 1, \ldots, \left\lfloor \frac{K}{2} \right\rfloor$.
 - E.g., $\sum_{i \in \mathcal{L}^*_1} r^*_i = \sum_{i \in \mathcal{L}^*_7} D_i$, $\sum_{i \in \mathcal{L}^*_2} r^*_i = \sum_{i \in \mathcal{L}^*_6} D_i$

Note that when K is odd, then $l_k = 1$ for $k = \left\lfloor K/2 \right\rfloor + 1$.
Properties of ρ^*

- There is a unique ρ^* and one or more $d^* \in \mathbb{D}$, with properties:
 - Nodes are partitioned in distinct exchange ratio sets L_1, L_2, \ldots, L_7.
 - $K = 7$ depends on G and D_i, $i = 1, \ldots, N$.
 - L_7 nodes work only with L_1 nodes, and so on.
 - It holds: $l_1 \cdot l_7 = l_2 \cdot l_6 = \ldots = 1$.

- **Theorem**: If an exchange policy satisfies the above properties, then it is lex-optimal.
Examples

- Tandem networks with 2 and 3 nodes, having resources $D = 1$.

 ![Tandem network diagram](image)

- Triangle network with identical nodes.

 ![Triangle network diagram](image)

- In the two tandems there is a unique exchange configuration for the lex-optimal ratios; while in the triangle all configurations for $0 \leq a \leq 1$ give the lex-optimal ratio.
Examples

- Binary tree network with 3 levels; identical nodes, $D = 1$.

![Diagram of a binary tree network with 3 levels and identical nodes, showing the value $D = 1$.]
Examples

- Impact of endowments.
- Complete graphs of 6 nodes; slightly different endowments.
- Left: $K = 1$, Right: $K = 2$.
- Complete graphs have at most $K = 2$:
 - Whenever the maximum endowment exceeds the sum of the rest.
Examples

- \(r_1^* = 26, r_2^* = 20, r_3^* = 39.74, r_4^* = 42.78, r_5^* = 93.49, r_6^* = 14.97, r_7^* = 30.38, r_8^* = 20.96, r_9^* = 30.38, r_{10}^* = 4.28, r_{11}^* = 160, r_{12}^* = 6.25, \) and \(r_{13}^* = 33.75. \)

- \(K^* = 6 \) levels: 0.25, 0.4278, 0.7692, 2.3373, 1.3, 4.

- Level sets: \(\mathcal{L}_1^* = \{12, 13\}, \mathcal{L}_2^* = \{4, 6, 8, 10\}, \mathcal{L}_3^* = \{2\}, \mathcal{L}_4^* = \{1\}, \mathcal{L}_5^* = \{3, 5, 7, 9\}, \) and \(\mathcal{L}_6^* = \{11\}. \)
Examples

- Impact of graph.
- $K^* = 4$ levels: 0.45, 0.77, 1.3, 2.22
- Level sets: $\mathcal{L}_1^* = \{4, 6, 8, 10, 13\}$, $\mathcal{L}_2^* = \{2\}$, $\mathcal{L}_3^* = \{1\}$, $\mathcal{L}_4^* = \{3, 5, 7, 9, 11, 12\}$.
- What has changed?
 - $K = 4$ instead of $K = 6$.
 - Node 12 went from lowest to highest level, while 13 stayed in the lowest!
 - Node 6 changed relative ranking, although he is not connected, nor has a common neighbor with nodes 12, 13.
Scaling the lex-optimal vector

- Scaling the tandem network; assume all node endowments equal to 1.

\[
\begin{align*}
\text{r=1} & \quad 1 & \quad \text{r=1} \\
1 & & \\
0.5 & & 0.5 \\
\text{r=0.5} & \quad 1 & \quad \text{r=2} & \quad 1 & \quad \text{r=0.5} \\
0.5 & & & & \\
\text{r=1} & \quad 1 & \quad 1 & \quad \text{r=1} \\
1 & & & & \\
2/3 & \quad \text{r=1.5} & \quad 0.5 & \quad 1/3 & \quad \text{r=1.5} & \quad 1 & \quad \text{r=2/3} \\
\frac{n}{n+1} & \quad \frac{n+1}{n(n+1)} & \quad \frac{1}{n} & \quad \frac{n}{n+1} & \quad \frac{(n-1)(n+1)}{n} & \quad \frac{n+1}{n} & \quad \frac{2}{n} & \quad \frac{n}{n+1} & \quad \frac{(n-2)(n+1)}{n} \\
1 & & & & & & & & \\
\end{align*}
\]
Binary tree network with 3 levels; identical nodes, $D = 1$.
Scaling

- Scaling the tree network.
Scaling

- Odd level nodes obtain resource 2; even level nodes resource 0.5.
Dynamic Network Operation

- Node i creates "service token" (e.g., relay opportunity) with a certain probability based on the average generation rate D_i.

- Node i keeps track of the number of tokens $d_{ij}(t)$ that were given to j, and the number of tokens $d_{ji}(t)$ received by j until time t.

- Proportional allocation policy by each node i in slot t:
 - Announces to its neighbors its current aggregate exchange ratio:
 \[\rho_i(t) = \frac{r_i(t)}{D_i(t)}, \]
 where $r_i(t) = \sum_{\tau=1}^{t} \sum_j d_{ji}(\tau)$, and $D_i(t) = \sum_j d_{ji}(t)$.
 - Allocates its generated tokens to the neighbor j that has the smallest ratio $r_j(t)$.

- The ratio converges to the lex-optimal point:
 \[\lim_{t \to \infty} \rho_i(t) = \rho_i^* \]

Dynamic Network Operation

- Assume each node i only keeps track of the tokens she gives and receives from each neighbor j, $d_{ij}(t)$, $d_{ji}(t)$.

- An alternative policy is to rely on bilateral interactions, where i allocates its resource to j such that:
 \[
 j^* = \arg \min_{j: (i,j) \in \mathcal{E}} \frac{d_{ij}(t)}{d_{ji}(t)},
 \]

- We observe numerically that under this policy we also have $\rho_i(t) \to \rho^*$.

What if the connections are not bidirectional?

- If the links are not bidirectional, obvious options of collaboration will not be activated under bilateral allocation strategies.

- Mechanisms that rely on some form of currency that circulates are needed so that cycles with more than two nodes are activated.